

Sand island reshaping in response to selected discharges: the Vistula River returning its natural state

Andrzej Strużyński, Maciej Wyrębek, Adam Nowak, Agnieszka Woś, Jacek Florek, Leszek Książek

University of Agriculture in Kraków

Presentation schedule

Object description
The goal of the study
Methodology
Results
Conclusions

investigated reach

channel width: 400m width of alluvial terrace: about 1000 m

reach length: 1900 m river slope: 0.00025 to 0.00329 [-]

Sternula albifrons

21-27 cm, 45-60 g, wingspan 45-55 cm

http://www.avibirds.com/euh tml/Little_Tern.html

Time = 8(d): 0(h): 0(m): 0(s)

Time = 43(d): 6(h): 0(m): 0(s)

6/2

The purpose of this paper is to identify the conditions for the formation and disappearance of sand islands within the limited discharge (well below bankfull).

Time [days] Discharge [m³s⁻¹] ΤI Description Wave 1 Wave 2 0 / 252 0/278 Initial parameters Gradual flooding of the island, causing 3.5 8 Ι activation of 3 streams acting on it 485 444 Increasing flow in 3 streams (arms) leading to 0-1 5 _1 the total submerging of the island (nesting Π 900 unsuccessful) Flow from the total covering of the island to 1 3.3 III reaching the maximum discharge Q_{max} 498 1106 Flow from the maximum discharge Q_{max} to the 12.5 $-^1$ IV resurfacing of the island 790 Flow from the resurfacing of the island's top to 1.7514 1-2 V the re-emergence of 3 streams (phase I) 397 439 The end of the simulation VI 3.75 / 259 14/307

CCHE2D model with sediment transport

Wu et al. equation

modeled reach length – 1900 m width – 540m

average cell dimensions - 5x5 m

time step – 5 sec

Time = 8(d): 0(h): 0(m): 0(s)

Time = 43(d): 6(h): 0(m): 0(s)

Analysed modelling results

- longitudinal profile
- 22 monitor points

Bed material characteristics

- 6 probes from the island
- measurements in the river

1. Object description, 2. The goal of the study, 3. Methodology, 4. Results, 5. Conclusions

1. Object description, 2. The goal of the study, 3. Methodology, 4. Results, 5. Conclusions

16/21

Data gathered in monitor points - Wave_1

Data gathered in monitor points - Wave_2

1. Object description, 2. The goal of the study, 3. Methodology, 4. Results, 5. Conclusions

Flow				Point		Wave_1
phase	MW-02	MW-05	F	J	0	MW-14
Ι	acc. +0.003 ¹ 0.07 – 0.35 ² nm / rp ³ 0.12 / 0.27 ⁴	acc. +0.021 0.33 – 0.96 rp /dn 0.32 / 0.51	_	no. +0.000 0.00 – 0.10 nm 0.03 / 0.13	acc. +0.000 0.00 – 0.86 nm / rp 0.11 / 0.42	no. +0.000 0.00 – 0.00 nm 0.01 / 0.04
III	acc. +0.007 0.40 – 0.50 rp 0.32 / 0.34	acc/er +0.022 1.12 – 1.42 dn 0.60 / 0.63	_	acc +0.001 0.12 – 0.17 nm / rp 0.17 / 0.18	acc. +0.002 0.94 – 1.11 rp /dn 0.48 / 0.50	no +0.000 0.00 - 0.00 nm 0.02 / 0.03
v	acc. +0.012 0.51 – 0.43 rp 0.33 / 0.34	er/acc +0.023 1.41 – 0.95 dn 0.57 / 0.63	_	acc. +0.001 0.17 – 0.07 rp / nm 0.15 – 0.18	acc. +0.003 1.10 – 0.83 dn / rp 0.46 / 0.50	no +0.000 0.00 - 0.00 nm 0.02 / 0.03
VI	acc. +0.014 0.42 – 0.08 rp / nm 0.17 / 0.29	acc. +0.032 0.92 – 0.33 rp 0.36 / 0.49	_	acc. +0.001 0.08 – 0.00 rp / nm 0.02 / 0.11	acc. +0.005 0.75 – 0.00 rp / nm 0.14 / 0.38	no +0.000 0.00 - 0.00 nm 0.01 / 0.03

¹ bed process: no – no change, acc – accumulation, er – erosion; altitude change [m]

² shear stresses [Nm⁻²], bold means incipient motion exceedance

³ bed form description: nm – no movement, rp – ripples, dn – dunes

⁴ velocity average / maximal [ms⁻¹]

гр	Point						
FP	MW-02	MW-05	F	J	0	MW-14	
Ι	acc +0.004	no 0.000	no 0.000	no 0.000	acc +0.003	no 0.000	
	0.03 – 0.38	0.00 – 0.00	0.00 – 0.00	0.00 – 0.09	0.00 – 0.55	0.00 – 0.01	
	nm / rp	nm	nm	nm	nm / rp	nm	
	0.12 / 0.28	0.00 / 0.00	0.00 / 0.00	0.01 / 0.11	0.09 / 0.32	0.02 / 0.05	
II	acc/er +0.008	acc/er -0.007	acc/err +0.004	acc +0.066	acc / er -0.011	no/acc +0.031	
	0.40 – 1.89	0.00 – 1.45	0.00 – 1.50	0.09 – 1.59	0.64 – 2.02	0.01 – 0.69	
	rp / dn	rp / dn	nm / rp	nm / rp / dn	rp / dn	nm / rp	
	0.50 / 0.74	0.36 / 0.60	0.06 / 0.47	0.35 / 0.65	0.59 / 0.77	0.17 / 0.45	
III	er -0.036	er -0.027	er -0.059	acc +0.226	er -0.034	acc +0.104	
	2.01 – 2.68	1.52 – 2.07	1.97 – 2.85	1.69 – 2.65	2.07 – 2.42	0.74 – 1.49	
	dn	dn	dn	dn	dn	rp / dn	
	0.86 / 0.92	0.71 / 0.77	0.72 / 0.80	0.79 / 0.87	0.84 / 0.88	0.59 / 0.69	
IV	er -0.250	er -0.083	er / acc -0.104	acc/er +0.336	er / acc -0.036	acc +0.313	
	2.69 – 1.83	2.09 – 1.65	2.84 – 0.61	2.70 – 2.37	2.42 – 1.21	1.53 – 1.21	
	dn	dn	dn / rp	dn	dn	dn	
	0.89 / 0.94	0.74 / 0.78	0.64 / 0.80	0.86 / 0.91	0.77 / 0.88	0.68 / 0.72	
V	er/acc -0.263	er/acc -0.078	acc / no -0.101	er +0.257	acc +0.003	acc/er +0.316	
	1.76 – 0.57	1.62 – 0.19	0.47 – 0.00	2.33 – 0.00	1.17 – 0.02	1.19 – 0.38	
	dn / rp	dn / rp	rp / nm	dn / rp / nm	dn / rp / nm	dn / rp	
	0.51 / 0.72	0.38 / 0.63	0.02 / 0.25	0.36 / 0.73	0.24 / 0.57	0.35 / 0.56	
VI	acc -0.260	acc -0.077	no -0.101	no +0.257	acc/ no +0.009	er / no +0.315	
	0.57 – 0.22	0.19 – 0.00	0.00 – 0.00	0.00 – 0.00	0.02 - 0.00	0.39 – 0.00	
	rp / nm	nm	nm	nm	nm	rp / nm	
	0.28 / 0.37	0.02 / 0.15	0.00 / 0.00	0.00 / 0.00	0.01 / 0.06	0.19 / 0.28	

¹ bed process: no – no change, acc – accumulation, er – erosion; altitude change [m],

² shear stresses [Nm⁻²], bold means incipient motion exceedance,

³ bed form description: nm – no movement, rp – ripples, dn – dunes,

⁴ velocity average / maximal [ms⁻¹].

Wave_1 caused only processes which smoothed the lower parts of the island and did not break the nesting. When flows similar to Wave_1 pass and do not cover the top of the island (point F), this may lead to gradual expansion on areas downstream of its top.

Wave_2 produced a strong effect of depositing and shifting the island, although it seems that a wave that fits in the channel may cause its shape to change to more elongated and narrow (fusiform), and to relocate the island downstream. Additionally, this wave turned the breeding unsuccessful in the nesting colony.

Phases I and II, which cover a part of the island, seem not to be essential to the course of the island's formation process, although it is during phase II (i.e., from the moment water starts flowing over a significant area of the island to the moment when it is completely flooded), that fluvial processes gain in strength and become the reason for relatively large changes to the shape of the island. The passage of the wave culmination does not change the trends of processes occurring. The clearest change in the trend of fluvial processes occurs in phases IV and V, when the local water layer covering the island disappears. Cross-flows having the nature of a sheet flow then occur in dips within the main body of the island, and these have significant erosion capability.

20/

The 2D modelling carried out provided data supporting the thesis that exceeding the conditions of bed material movement does not always lead to activation of the erosion processes. With the right load of material transported in the river bed, the transport capacity of the stream may be exhausted and, as a result, the bottom will not be eroded. For this reason, the next step in the analyses will be to establish the transport balance along different cross-sections of this island.

